Skip to content

Tables and DataFrames

Tables.jl provides an ecosystem-wide interface to tabular data in Julia, ensuring interoperability with DataFrames.jl, CSV.jl, and hundreds of other packages that implement the standard.

DimensionalData.jl implements the Tables.jl interface for AbstractDimArray and AbstractDimStack. DimStack layers are unrolled so they are all the same size, and dimensions loop to match the length of the largest layer.

Columns are given the name of the array or stack layer, and the result of DD.name(dimension) for Dimension columns.

Looping of dimensions and stack layers is done lazily, and does not allocate unless collected.

Example

julia
using DimensionalData
using Dates
using DataFrames

Define some dimensions:

julia
julia> x, y, c = X(1:10), Y(1:10), Dim{:category}('a':'z')
(X        1:10,
Y        1:10,
category 'a':1:'z')
julia
julia> A = rand(x, y, c; name=:data)
╭────────────────────────────────────╮
10×10×26 DimArray{Float64, 3} data
├────────────────────────────────────┴─────────────────────────────────── dims ┐
X        Sampled{Int64} 1:10 ForwardOrdered Regular Points,
Y        Sampled{Int64} 1:10 ForwardOrdered Regular Points,
category Categorical{Char} 'a':1:'z' ForwardOrdered
└──────────────────────────────────────────────────────────────────────────────┘
[:, :, 1]
  1         2         38         9         10
  1    0.599241  0.518938  0.341133     0.486559  0.162516   0.934189
  2    0.192192  0.336376  0.636476     0.840593  0.687569   0.294486
  3    0.607291  0.963657  0.353968     0.120955  0.434286   0.887294
  4    0.921958  0.128827  0.517175     0.101305  0.743407   0.0120967
  ⋮                                  ⋱                       ⋮
  7    0.194849  0.975511  0.612828     0.888721  0.890574   0.436622
  8    0.364097  0.163103  0.142055     0.049689  0.259847   0.570725
  9    0.394448  0.755939  0.54624      0.156388  0.210664   0.966517
 10    0.828604  0.359421  0.51621   …  0.828161  0.107233   0.74172

Converting to DataFrame

Arrays will have columns for each dimension, and only one data column

julia
julia> DataFrame(A)
2600×4 DataFrame
  Row │ X      Y      category  data
 Int64  Int64  Char      Float64
──────┼───────────────────────────────────
    1 │     1      1  a         0.599241
    2 │     2      1  a         0.192192
    3 │     3      1  a         0.607291
    4 │     4      1  a         0.921958
    5 │     5      1  a         0.449491
    6 │     6      1  a         0.581131
    7 │     7      1  a         0.194849
    8 │     8      1  a         0.364097
  ⋮   │   ⋮      ⋮       ⋮          ⋮
 2594 │     4     10  z         0.852872
 2595 │     5     10  z         0.0958843
 2596 │     6     10  z         0.315302
 2597 │     7     10  z         0.236866
 2598 │     8     10  z         0.894053
 2599 │     9     10  z         0.350024
 2600 │    10     10  z         0.417756
                         2585 rows omitted

Converting to CSV

We can also write arrays and stacks directly to CSV.jl, or any other data type supporting the Tables.jl interface.

julia
using CSV
CSV.write("dimstack.csv", st)
readlines("dimstack.csv")
2601-element Vector{String}:
 "X,Y,category,data1,data2"
 "1,1,a,0.55560637324799,0.845200516911609"
 "2,1,a,0.10276733254788795,0.9104238640380062"
 "3,1,a,0.22237128922242078,0.8268020755919178"
 "4,1,a,0.5501481631111826,0.9447511416331498"
 "5,1,a,0.09300753748828394,0.15945803739833375"
 "6,1,a,0.48952511607945026,0.6146564273146751"
 "7,1,a,0.7938317326707394,0.9770663775826343"
 "8,1,a,0.0019198597596568057,0.798655984630017"
 "9,1,a,0.44833963865079907,0.40268027828179853"

 "2,10,z,0.9675326879984427,0.41940525122635797"
 "3,10,z,0.5099922507050859,0.07986058669268159"
 "4,10,z,0.3053673139967894,0.4496996354823414"
 "5,10,z,0.8146121812750928,0.9452913850518949"
 "6,10,z,0.38167574879167476,0.24524306337289326"
 "7,10,z,0.17977958441149666,0.1985699519321249"
 "8,10,z,0.7044663405368152,0.694278906020718"
 "9,10,z,0.5697400488168892,0.20636222545147498"
 "10,10,z,0.8560905731682101,0.8428656510212863"