CUDA & GPUs
Running regular julia code on GPUs is one of the most amazing things about the language. DimensionalData.jl leans into this as much as possible.
using DimensionalData, CUDA
# Create a Float32 array to use on the GPU
A = rand(Float32, X(1.0:1000.0), Y(1.0:2000.0))
# Move the parent data to the GPU with `modify` and the `CuArray` constructor:
cuA = modify(CuArray, A)
The result of a GPU broadcast is still a DimArray:
julia> cuA2 = cuA .* 2
╭───────────────────────────────╮
│ 1000×2000 DimArray{Float32,2} │
├───────────────────────────────┴────────────────────────────── dims ┐
↓ X Sampled{Float64} 1.0:1.0:1000.0 ForwardOrdered Regular Points,
→ Y Sampled{Float64} 1.0:1.0:2000.0 ForwardOrdered Regular Points
└────────────────────────────────────────────────────────────────────┘
↓ → 1.0 2.0 3.0 4.0 … 1998.0 1999.0 2000.0
1.0 1.69506 1.28405 0.989952 0.900394 1.73623 1.30427 1.98193
2.0 1.73591 0.929995 0.665742 0.345501 0.162919 1.81708 0.702944
3.0 1.24575 1.80455 1.78028 1.49097 0.45804 0.224375 0.0197492
4.0 0.374026 1.91495 1.17645 0.995683 0.835288 1.54822 0.487601
5.0 1.17673 0.0557598 0.183637 1.90645 … 0.88058 1.23788 1.59705
6.0 1.57019 0.215049 1.9155 0.982762 0.906838 0.1076 0.390081
⋮ ⋱
995.0 1.48275 0.40409 1.37963 1.66622 0.462981 1.4492 1.26917
996.0 1.88869 1.86174 0.298383 0.854739 … 0.778222 1.42151 1.75568
997.0 1.88092 1.87436 0.285965 0.304688 1.32669 0.0599431 0.134186
998.0 1.18035 1.61025 0.352614 1.75847 0.464554 1.90309 1.30923
999.0 1.40584 1.83056 0.0804518 0.177423 1.20779 1.95217 0.881149
1000.0 1.41334 0.719974 0.479126 1.92721 0.0649391 0.642908 1.07277
But the data is on the GPU:
julia> typeof(parent(cuA2))
CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}
GPU Integration goals
DimensionalData.jl has two GPU-related goals:
- Work seamlessly with Base julia broadcasts and other operations that already
work on GPU.
- Work as arguments to custom GPU kernel funcions.
This means any AbstractDimArray
must be automatically moved to the gpu and its fields converted to GPU friendly forms whenever required, using Adapt.jl).
The array data must converts to the correct GPU array backend when
Adapt.adapt(dimarray)
is called.All DimensionalData.jl objects, except the actual parent array, need to be immutable
isbits
or convertable to them. This is one reason DimensionalData.jl usesrebuild
and a functional style, rather than in-place modification of fields.Symbols need to be moved to the type system
Name{:layer_name}()
replaces:layer_name
Metadata dicts need to be stripped, they are often too difficult to convert, and not needed on GPU.
As an example, DynamicGrids.jl uses AbstractDimArray
for auxiliary model data that are passed into KernelAbstractions.jl/ CUDA.jl kernels.