API Reference 
Arrays 
AbstractBasicDimArray <: AbstractArrayThe abstract supertype for all arrays with a dims method that returns a Tuple of Dimension
Only keyword rebuild is guaranteed to work with AbstractBasicDimArray.
AbstractDimArray <: AbstractBasicArrayAbstract supertype for all "dim" arrays.
These arrays return a Tuple of Dimension from a dims method, and can be rebuilt using rebuild.
parent must return the source array.
They should have metadata, name and refdims methods, although these are optional.
A rebuild method for AbstractDimArray must accept data, dims, refdims, name, metadata arguments.
Indexing AbstractDimArray with non-range AbstractArray has undefined effects on the Dimension index. Use forward-ordered arrays only"
DimArray <: AbstractDimArray
DimArray(data, dims, refdims, name, metadata)
DimArray(data, dims::Tuple; refdims=(), name=NoName(), metadata=NoMetadata())The main concrete subtype of AbstractDimArray.
DimArray maintains and updates its Dimensions through transformations and moves dimensions to reference dimension refdims after reducing operations (like e.g. mean).
Arguments
- data: An- AbstractArray.
- dims: A- Tupleof- Dimension
- name: A string name for the array. Shows in plots and tables.
- refdims: refence dimensions. Usually set programmatically to track past slices and reductions of dimension for labelling and reconstruction.
- metadata:- Dictor- Metadataobject, or- NoMetadata()
Indexing can be done with all regular indices, or with Dimensions and/or Selectors.
Indexing AbstractDimArray with non-range AbstractArray has undefined effects on the Dimension index. Use forward-ordered arrays only"
Example:
julia> using Dates, DimensionalData
julia> ti = Ti(DateTime(2001):Month(1):DateTime(2001,12));
julia> x = X(10:10:100);
julia> A = DimArray(rand(12,10), (ti, x), name="example");
julia> A[X(Near([12, 35])), Ti(At(DateTime(2001,5)))]
╭───────────────────────────────────────╮
│ 2-element DimArray{Float64,1} example │
├───────────────────────────────────────┴─────────────── dims ┐
  ↓ X Sampled{Int64} [10, 40] ForwardOrdered Irregular Points
└─────────────────────────────────────────────────────────────┘
 10  0.253849
 40  0.637077
julia> A[Near(DateTime(2001, 5, 4)), Between(20, 50)]
╭───────────────────────────────────────╮
│ 4-element DimArray{Float64,1} example │
├───────────────────────────────────────┴───────────── dims ┐
  ↓ X Sampled{Int64} 20:10:50 ForwardOrdered Regular Points
└───────────────────────────────────────────────────────────┘
 20  0.774092
 30  0.823656
 40  0.637077
 50  0.692235Shorthand AbstractDimArray constructors:
Base.fill(x, dims::Dimension...; kw...) => DimArray
Base.fill(x, dims::Tuple{Vararg{Dimension}}; kw...) => DimArrayCreate a DimArray with a fill value of x.
There are two kinds of Dimension value acepted:
- A - Dimensionholding an- AbstractVectorwill set the dimension index to that- AbstractVector, and detect the dimension lookup.
- A - Dimensionholding an- Integerwill set the length of the axis, and set the dimension lookup to- NoLookup.
Keywords are the same as for DimArray.
Example
julia> using DimensionalData, Random; Random.seed!(123);
julia> rand(Bool, X(2), Y(4))
╭──────────────────────╮
│ 2×4 DimArray{Bool,2} │
├──────────────── dims ┤
  ↓ X, → Y
└──────────────────────┘
 0  0  0  0
 1  0  0  1Base.rand(x, dims::Dimension...; kw...) => DimArray
Base.rand(x, dims::Tuple{Vararg{Dimension}}; kw...) => DimArray
Base.rand(r::AbstractRNG, x, dims::Tuple{Vararg{Dimension}}; kw...) => DimArray
Base.rand(r::AbstractRNG, x, dims::Dimension...; kw...) => DimArrayCreate a DimArray of random values.
There are two kinds of Dimension value acepted:
- A - Dimensionholding an- AbstractVectorwill set the dimension index to that- AbstractVector, and detect the dimension lookup.
- A - Dimensionholding an- Integerwill set the length of the axis, and set the dimension lookup to- NoLookup.
Keywords are the same as for DimArray.
Example
julia> using DimensionalData
julia> rand(Bool, X(2), Y(4))
╭──────────────────────╮
│ 2×4 DimArray{Bool,2} │
├──────────────── dims ┤
  ↓ X, → Y
└──────────────────────┘
 0  0  0  0
 1  0  0  1
julia> rand(X([:a, :b, :c]), Y(100.0:50:200.0))
╭─────────────────────────╮
│ 3×3 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────── dims ┐
  ↓ X Categorical{Symbol} [:a, :b, :c] ForwardOrdered,
  → Y Sampled{Float64} 100.0:50.0:200.0 ForwardOrdered Regular Points
└─────────────────────────────────────────────────────────────────────┘
 ↓ →  100.0       150.0       200.0
  :a    0.443494    0.253849    0.867547
  :b    0.745673    0.334152    0.0802658
  :c    0.512083    0.427328    0.311448Base.zeros(x, dims::Dimension...; kw...) => DimArray
Base.zeros(x, dims::Tuple{Vararg{Dimension}}; kw...) => DimArrayCreate a DimArray of zeros.
There are two kinds of Dimension value acepted:
- A - Dimensionholding an- AbstractVectorwill set the dimension index to that- AbstractVector, and detect the dimension lookup.
- A - Dimensionholding an- Integerwill set the length of the axis, and set the dimension lookup to- NoLookup.
Keywords are the same as for DimArray.
Example
julia> using DimensionalData
julia> zeros(Bool, X(2), Y(4))
╭──────────────────────╮
│ 2×4 DimArray{Bool,2} │
├──────────────── dims ┤
  ↓ X, → Y
└──────────────────────┘
 0  0  0  0
 0  0  0  0
julia> zeros(X([:a, :b, :c]), Y(100.0:50:200.0))
╭─────────────────────────╮
│ 3×3 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────── dims ┐
  ↓ X Categorical{Symbol} [:a, :b, :c] ForwardOrdered,
  → Y Sampled{Float64} 100.0:50.0:200.0 ForwardOrdered Regular Points
└─────────────────────────────────────────────────────────────────────┘
 ↓ →  100.0  150.0  200.0
  :a    0.0    0.0    0.0
  :b    0.0    0.0    0.0
  :c    0.0    0.0    0.0Base.ones(x, dims::Dimension...; kw...) => DimArray
Base.ones(x, dims::Tuple{Vararg{Dimension}}; kw...) => DimArrayCreate a DimArray of ones.
There are two kinds of Dimension value acepted:
- A - Dimensionholding an- AbstractVectorwill set the dimension index to that- AbstractVector, and detect the dimension lookup.
- A - Dimensionholding an- Integerwill set the length of the axis, and set the dimension lookup to- NoLookup.
Keywords are the same as for DimArray.
Example
julia> using DimensionalData
julia> ones(Bool, X(2), Y(4))
╭──────────────────────╮
│ 2×4 DimArray{Bool,2} │
├──────────────── dims ┤
  ↓ X, → Y
└──────────────────────┘
 1  1  1  1
 1  1  1  1
julia> ones(X([:a, :b, :c]), Y(100.0:50:200.0))
╭─────────────────────────╮
│ 3×3 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────── dims ┐
  ↓ X Categorical{Symbol} [:a, :b, :c] ForwardOrdered,
  → Y Sampled{Float64} 100.0:50.0:200.0 ForwardOrdered Regular Points
└─────────────────────────────────────────────────────────────────────┘
 ↓ →  100.0  150.0  200.0
  :a    1.0    1.0    1.0
  :b    1.0    1.0    1.0
  :c    1.0    1.0    1.0Functions for getting information from objects:
dims(x, [dims::Tuple]) => Tuple{Vararg{Dimension}}
dims(x, dim) => DimensionReturn a tuple of Dimensions for an object, in the order that matches the axes or columns of the underlying data.
dims can be Dimension, Dimension types, or Symbols for Dim{Symbol}.
The default is to return nothing.
dims(x, query) => Tuple{Vararg{Dimension}}
dims(x, query...) => Tuple{Vararg{Dimension}}Get the dimension(s) matching the type(s) of the query dimension.
Lookup can be an Int or an Dimension, or a tuple containing any combination of either.
Arguments
- x: any object with a- dimsmethod, or a- Tupleof- Dimension.
- query: Tuple or a single- Dimensionor- Dimension- Type.
Example
julia> using DimensionalData
julia> A = DimArray(ones(2, 3, 2), (X, Y, Z))
╭───────────────────────────╮
│ 2×3×2 DimArray{Float64,3} │
├───────────────────── dims ┤
  ↓ X, → Y, ↗ Z
└───────────────────────────┘
[:, :, 1]
 1.0  1.0  1.0
 1.0  1.0  1.0
julia> dims(A, (X, Y))
↓ X, → Yrefdims(x, [dims::Tuple]) => Tuple{Vararg{Dimension}}
refdims(x, dim) => DimensionReference dimensions for an array that is a slice or view of another array with more dimensions.
slicedims(a, dims) returns a tuple containing the current new dimensions and the new reference dimensions. Refdims can be stored in a field or discarded, as it is mostly to give context to plots. Ignoring refdims will simply leave some captions empty.
The default is to return an empty Tuple ().
metadata(x) => (object metadata)
metadata(x, dims::Tuple)  => Tuple (Dimension metadata)
metadata(xs::Tuple) => TupleReturns the metadata for an object or for the specified dimension(s)
Second argument dims can be Dimensions, Dimension types, or Symbols for Dim{Symbol}.
name(x) => Symbol
name(xs:Tuple) => NTuple{N,Symbol}
name(x, dims::Tuple) => NTuple{N,Symbol}
name(x, dim) => SymbolGet the name of an array or Dimension, or a tuple of of either as a Symbol.
Second argument dims can be Dimensions, Dimension types, or Symbols for Dim{Symbol}.
otherdims(x, query) => Tuple{Vararg{Dimension,N}}Get the dimensions of an object not in query.
Arguments
- x: any object with a- dimsmethod, a- Tupleof- Dimension.
- query: Tuple or single- Dimensionor dimension- Type.
- f:- <:by default, but can be- >:to match abstract types to concrete types.
A tuple holding the unmatched dimensions is always returned.
Example
julia> using DimensionalData, DimensionalData.Dimensions
julia> A = DimArray(ones(10, 10, 10), (X, Y, Z));
julia> otherdims(A, X)
↓ Y, → Z
julia> otherdims(A, (Y, Z))
↓ Xdimnum(x, query::Tuple) => NTuple{Int}
dimnum(x, query) => IntGet the number(s) of Dimension(s) as ordered in the dimensions of an object.
Arguments
- x: any object with a- dimsmethod, a- Tupleof- Dimensionor a single- Dimension.
- query: Tuple, Array or single- Dimensionor dimension- Type.
The return type will be a Tuple of Int or a single Int, depending on whether query is a Tuple or single Dimension.
Example
julia> using DimensionalData
julia> A = DimArray(ones(10, 10, 10), (X, Y, Z));
julia> dimnum(A, (Z, X, Y))
(3, 1, 2)
julia> dimnum(A, Y)
2hasdim([f], x, query::Tuple) => NTuple{Bool}
hasdim([f], x, query...) => NTuple{Bool}
hasdim([f], x, query) => BoolCheck if an object x has dimensions that match or inherit from the query dimensions.
Arguments
- x: any object with a- dimsmethod, a- Tupleof- Dimensionor a single- Dimension.
- query: Tuple or single- Dimensionor dimension- Type.
- f:- <:by default, but can be- >:to match abstract types to concrete types.
Check if an object or tuple contains an Dimension, or a tuple of dimensions.
Example
julia> using DimensionalData
julia> A = DimArray(ones(10, 10, 10), (X, Y, Z));
julia> hasdim(A, X)
true
julia> hasdim(A, (Z, X, Y))
(true, true, true)
julia> hasdim(A, Ti)
falseMulti-array datasets 
AbstractDimStackAbstract supertype for dimensional stacks.
These have multiple layers of data, but share dimensions.
Notably, their behaviour lies somewhere between a DimArray and a NamedTuple:
- indexing with a - Symbolas in- dimstack[:symbol]returns a- DimArraylayer.
- iteration and - mapapply over array layers, as indexed with a- Symbol.
- getindexand many base methods are applied as for- DimArray- to avoid the need to always use- map.
This design gives very succinct code when working with many-layered, mixed-dimension objects. But it may be jarring initially - the most surprising outcome is that dimstack[1] will return a NamedTuple of values for the first index in all layers, while first(dimstack) will return the first value of the iterator - the DimArray for the first layer.
See DimStack for the concrete implementation. Most methods are defined on the abstract type.
To extend AbstractDimStack, implement argument and keyword version of rebuild and also rebuild_from_arrays.
The constructor of an AbstractDimStack must accept a NamedTuple.
DimStack <: AbstractDimStack
DimStack(data::AbstractDimArray...; kw...)
DimStack(data::Tuple{Vararg{AbstractDimArray}}; kw...)
DimStack(data::NamedTuple{Keys,Vararg{AbstractDimArray}}; kw...)
DimStack(data::NamedTuple, dims::DimTuple; metadata=NoMetadata(); kw...)DimStack holds multiple objects sharing some dimensions, in a NamedTuple.
Notably, their behaviour lies somewhere between a DimArray and a NamedTuple:
- indexing with a - Symbolas in- dimstack[:symbol]returns a- DimArraylayer.
- iteration and - mapapply over array layers, as indexed with a- Symbol.
- getindexor- viewwith- Int,- Dimensions or- Selectors that resolve to- Intwill return a- NamedTupleof values from each layer in the stack. This has very good performance, and avoids the need to always use- map.
- getindexor- viewwith a- Vectoror- Colonwill return another- DimStackwhere all data layers have been sliced.
- setindex!must pass a- Tupleor- NamedTuplematching the layers.
- many base and - Statisticsmethods (- sum,- meanetc) will work as for a- DimArrayagain removing the need to use- map.
function DimStack(A::AbstractDimArray;
    layersfrom=nothing, name=nothing, metadata=metadata(A), refdims=refdims(A), kw...
)For example, here we take the mean over the time dimension for all layers:
mean(mydimstack; dims=Ti)And this equivalent to:
map(A -> mean(A; dims=Ti), mydimstack)This design gives succinct code when working with many-layered, mixed-dimension objects.
But it may be jarring initially - the most surprising outcome is that dimstack[1] will return a NamedTuple of values for the first index in all layers, while first(dimstack) will return the first value of the iterator - the DimArray for the first layer.
DimStack can be constructed from multiple AbstractDimArray or a NamedTuple of AbstractArray and a matching dims tuple.
Most Base and Statistics methods that apply to AbstractArray can be used on all layers of the stack simulataneously. The result is a DimStack, or a NamedTuple if methods like mean are used without dims arguments, and return a single non-array value.
Example
julia> using DimensionalData
julia> A = [1.0 2.0 3.0; 4.0 5.0 6.0];
julia> dimz = (X([:a, :b]), Y(10.0:10.0:30.0))
↓ X [:a, :b],
→ Y 10.0:10.0:30.0
julia> da1 = DimArray(1A, dimz; name=:one);
julia> da2 = DimArray(2A, dimz; name=:two);
julia> da3 = DimArray(3A, dimz; name=:three);
julia> s = DimStack(da1, da2, da3);
julia> s[At(:b), At(10.0)]
(one = 4.0, two = 8.0, three = 12.0)
julia> s[X(At(:a))] isa DimStack
trueDimension generators 
DimIndices <: AbstractArray
DimIndices(x)
DimIndices(dims::Tuple)
DimIndices(dims::Dimension)Like CartesianIndices, but for Dimensions. Behaves as an Array of Tuple of Dimension(i) for all combinations of the axis indices of dims.
This can be used to view/index into arbitrary dimensions over an array, and is especially useful when combined with otherdims, to iterate over the indices of unknown dimension.
DimIndices can be used directly in getindex like CartesianIndices, and freely mixed with individual Dimensions or tuples of Dimension.
Example
Index a DimArray with DimIndices.
Notice that unlike CartesianIndices, it doesn't matter if the dimensions are not in the same order. Or even if they are not all contained in each.
julia> A = rand(Y(0.0:0.3:1.0), X('a':'f'))
╭─────────────────────────╮
│ 4×6 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────── dims ┐
  ↓ Y Sampled{Float64} 0.0:0.3:0.9 ForwardOrdered Regular Points,
  → X Categorical{Char} 'a':1:'f' ForwardOrdered
└─────────────────────────────────────────────────────────────────┘
 ↓ →   'a'       'b'       'c'        'd'        'e'       'f'
 0.0  0.9063    0.253849  0.0991336  0.0320967  0.774092  0.893537
 0.3  0.443494  0.334152  0.125287   0.350546   0.183555  0.354868
 0.6  0.745673  0.427328  0.692209   0.930332   0.297023  0.131798
 0.9  0.512083  0.867547  0.136551   0.959434   0.150155  0.941133
julia> di = DimIndices((X(1:2:4), Y(1:2:4)))
╭─────────────────────────────────────────────╮
│ 2×2 DimIndices{Tuple{X{Int64}, Y{Int64}},2} │
├─────────────────────────────────────── dims ┤
  ↓ X 1:2:3,
  → Y 1:2:3
└─────────────────────────────────────────────┘
 ↓ →  1                            3
 1     ↓ X 1, → Y 1   ↓ X 1, → Y 3
 3     ↓ X 3, → Y 1   ↓ X 3, → Y 3
julia> A[di] # Index A with these indices
╭─────────────────────────╮
│ 2×2 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────── dims ┐
  ↓ Y Sampled{Float64} 0.0:0.6:0.6 ForwardOrdered Regular Points,
  → X Categorical{Char} 'a':2:'c' ForwardOrdered
└─────────────────────────────────────────────────────────────────┘
 ↓ →   'a'       'c'
 0.0  0.9063    0.0991336
 0.6  0.745673  0.692209DimSelectors <: AbstractArray
DimSelectors(x; selectors, atol...)
DimSelectors(dims::Tuple; selectors, atol...)
DimSelectors(dims::Dimension; selectors, atol...)Like DimIndices, but returns Dimensions holding the chosen Selectors.
Indexing into another AbstractDimArray with DimSelectors is similar to doing an interpolation.
Keywords
- selectors:- Near,- Ator- Contains, or a mixed tuple of these.- Atis the default, meaning only exact or within- atolvalues are used.
- atol: used for- Atselectors only, as the- atolvalue.
Example
Here we can interpolate a DimArray to the lookups of another DimArray using DimSelectors with Near. This is essentially equivalent to nearest neighbour interpolation.
julia> A = rand(X(1.0:3.0:30.0), Y(1.0:5.0:30.0), Ti(1:2));
julia> target = rand(X(1.0:10.0:30.0), Y(1.0:10.0:30.0));
julia> A[DimSelectors(target; selectors=Near), Ti=2]
╭─────────────────────────╮
│ 3×3 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────────── dims ┐
  ↓ X Sampled{Float64} [1.0, 10.0, 22.0] ForwardOrdered Irregular Points,
  → Y Sampled{Float64} [1.0, 11.0, 21.0] ForwardOrdered Irregular Points
└─────────────────────────────────────────────────────────────────────────┘
  ↓ →  1.0        11.0       21.0
  1.0  0.691162    0.218579   0.539076
 10.0  0.0303789   0.420756   0.485687
 22.0  0.0967863   0.864856   0.870485Using At would make sure we only use exact interpolation, while Contains with sampling of Intervals would make sure that each values is taken only from an Interval that is present in the lookups.
DimPoints <: AbstractArray
DimPoints(x; order)
DimPoints(dims::Tuple; order)
DimPoints(dims::Dimension; order)Like CartesianIndices, but for the point values of the dimension index. Behaves as an Array of Tuple lookup values (whatever they are) for all combinations of the lookup values of dims.
Either a Dimension, a Tuple of Dimension or an object x that defines a dims method can be passed in.
Keywords
- order: determines the order of the points, the same as the order of- dimsby default.
Tables.jl/TableTraits.jl interface 
AbstractDimTable <: Tables.AbstractColumnsAbstract supertype for dim tables
DimTable <: AbstractDimTable
DimTable(s::AbstractDimStack; mergedims=nothing)
DimTable(x::AbstractDimArray; layersfrom=nothing, mergedims=nothing)
DimTable(xs::Vararg{AbstractDimArray}; layernames=nothing, mergedims=nothing)Construct a Tables.jl/TableTraits.jl compatible object out of an AbstractDimArray or AbstractDimStack.
This table will have columns for the array data and columns for each Dimension index, as a [DimColumn]. These are lazy, and generated as required.
Column names are converted from the dimension types using DimensionalData.name. This means type Ti becomes the column name :Ti, and Dim{:custom} becomes :custom.
To get dimension columns, you can index with Dimension (X()) or Dimension type (X) as well as the regular Int or Symbol.
Keywords
- mergedims: Combine two or more dimensions into a new dimension.
- layersfrom: Treat a dimension of an- AbstractDimArrayas layers of an- AbstractDimStack.
Example
julia> using DimensionalData, Tables
julia> a = DimArray(ones(16, 16, 3), (X, Y, Dim{:band}))
╭─────────────────────────────╮
│ 16×16×3 DimArray{Float64,3} │
├─────────────────────── dims ┤
  ↓ X, → Y, ↗ band
└─────────────────────────────┘
[:, :, 1]
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  …  1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  …  1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  …  1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0     1.0  1.0  1.0  1.0  1.0  1.0  1.0
 1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  …  1.0  1.0  1.0  1.0  1.0  1.0  1.0
julia>Group by methods 
For transforming DimensionalData objects:
groupby(A::Union{AbstractDimArray,AbstractDimStack}, dims::Pair...)
groupby(A::Union{AbstractDimArray,AbstractDimStack}, dims::Dimension{<:Callable}...)Group A by grouping functions or Bins over multiple dimensions.
Arguments
- A: any- AbstractDimArrayor- AbstractDimStack.
- dims:- Pairs such as- groups = groupby(A, :dimname => groupingfunction)or wrapped- Dimensions like- groups = groupby(A, DimType(groupingfunction)). Instead of a grouping function- Binscan be used to specify group bins.
Return value
A DimGroupByArray is returned, which is basically a regular AbstractDimArray but holding the grouped AbstractDimArray or AbstractDimStack. Its dims hold the sorted values returned by the grouping function/s.
Base julia and package methods work on DimGroupByArray as for any other AbstractArray of AbstractArray.
It is common to broadcast or map a reducing function over groups, such as mean or sum, like mean.(groups) or map(mean, groups). This will return a regular DimArray, or DimGroupByArray if dims keyword is used in the reducing function or it otherwise returns an AbstractDimArray or AbstractDimStack.
Example
Group some data along the time dimension:
julia> using DimensionalData, Dates
julia> A = rand(X(1:0.1:20), Y(1:20), Ti(DateTime(2000):Day(3):DateTime(2003)));
julia> groups = groupby(A, Ti => month) # Group by month
╭───────────────────────────────────────────────────╮
│ 12-element DimGroupByArray{DimArray{Float64,2},1} │
├───────────────────────────────────────────────────┴───────────── dims ┐
  ↓ Ti Sampled{Int64} [1, 2, …, 11, 12] ForwardOrdered Irregular Points
├───────────────────────────────────────────────────────────── metadata ┤
  Dict{Symbol, Any} with 1 entry:
  :groupby => :Ti=>month
├─────────────────────────────────────────────────────────── group dims ┤
  ↓ X, → Y, ↗ Ti
└───────────────────────────────────────────────────────────────────────┘
  1  191×20×32 DimArray
  2  191×20×28 DimArray
  3  191×20×31 DimArray
  ⋮
 11  191×20×30 DimArray
 12  191×20×31 DimArrayAnd take the mean:
julia> groupmeans = mean.(groups) # Take the monthly mean
╭────────────────────────────────╮
│ 12-element DimArray{Float64,1} │
├────────────────────────────────┴──────────────────────────────── dims ┐
  ↓ Ti Sampled{Int64} [1, 2, …, 11, 12] ForwardOrdered Irregular Points
├───────────────────────────────────────────────────────────── metadata ┤
  Dict{Symbol, Any} with 1 entry:
  :groupby => :Ti=>month
└───────────────────────────────────────────────────────────────────────┘
  1  0.500064
  2  0.499762
  3  0.500083
  4  0.499985
  ⋮
 10  0.500874
 11  0.498704
 12  0.50047Calculate daily anomalies from the monthly mean. Notice we map a broadcast .- rather than -. This is because the size of the arrays to not match after application of mean.
julia> map(.-, groupby(A, Ti=>month), mean.(groupby(A, Ti=>month), dims=Ti));Or do something else with Y:
julia> groupmeans = mean.(groupby(A, Ti=>month, Y=>isodd))
╭──────────────────────────╮
│ 12×2 DimArray{Float64,2} │
├──────────────────────────┴─────────────────────────────────────── dims ┐
  ↓ Ti Sampled{Int64} [1, 2, …, 11, 12] ForwardOrdered Irregular Points,
  → Y  Sampled{Bool} [false, true] ForwardOrdered Irregular Points
├────────────────────────────────────────────────────────────── metadata ┤
  Dict{Symbol, Any} with 1 entry:
  :groupby => (:Ti=>month, :Y=>isodd)
└────────────────────────────────────────────────────────────────────────┘
  ↓ →  false         true
  1        0.499594     0.500533
  2        0.498145     0.501379
  ⋮
 10        0.501105     0.500644
 11        0.498606     0.498801
 12        0.501643     0.499298DimGroupByArray <: AbstractDimArrayDimGroupByArray is essentially a DimArray but holding the results of a groupby operation.
Its dimensions are the sorted results of the grouping functions used in groupby.
This wrapper allows for specialisations on later broadcast or reducing operations, e.g. for chunk reading with DiskArrays.jl, because we know the data originates from a single array.
Bins(f, bins; labels, pad)
Bins(bins; labels, pad)Specify bins to reduce groups after applying function f.
- f: a grouping function of the lookup values, by default- identity.
- bins:- an - Integerwill divide the group values into equally spaced sections.
- an - AbstractArrayof values will be treated as exact matches for the return value of- f. For example,- 1:3will create 3 bins - 1, 2, 3.
- an - AbstractArrayof- IntervalSets.Intervalcan be used to explicitly define the intervals. Overlapping intervals have undefined behaviour.
 
Keywords
- pad: fraction of the total interval to pad at each end when- Binscontains an
<<<<<<< HEAD Integer. This avoids losing the edge values. Note this is a messy solution - it will often be preferable to manually specify a Vector of chosen Intervals rather than relying on passing an Integer and pad. ======= Integer. This avoids losing the edge values. Note this is a messy solution - it will often be prefereble to manually specify a Vector of chosen Intervals rather than relying on passing an Integer and pad.
parent of c54bc6c (Fix whitespace)
- labels: a list of descriptive labels for the bins. The labels need to have the same length as- bins.
When the return value of f is a tuple, binning is applied to the last value of the tuples.
ranges(A::AbstractRange{<:Integer})Generate a Vector of UnitRange with length step(A)
intervals(A::AbstractRange)Generate a Vector of UnitRange with length step(A)
CyclicBins(f; cycle, start, step, labels)Cyclic bins to reduce groups after applying function f. Groups can wrap around the cycle. This is used for grouping in seasons, months and hours but can also be used for custom cycles.
- f: a grouping function of the lookup values, by default- identity.
Keywords
- cycle: the length of the cycle, in return values of- f.
- start: the start of the cycle: a return value of- f.
- stepthe number of sequential values to group.
- labels: either a vector of labels matching the number of groups, or a function that generates labels from- Vector{Int}of the selected bins.
When the return value of f is a tuple, binning is applied to the last value of the tuples.
seasons(; [start=Dates.December, labels])Generates CyclicBins for three month periods.
Keywords
- start: By default seasons start in December, but any integer- 1:12can be used.
- labels: either a vector of four labels, or a function that generates labels
<<<<<<< HEAD from Vector{Int} of the selected quarters. ======= from Vector{Int} of the selected quartals.
parent of c54bc6c (Fix whitespace)
months(step; [start=Dates.January, labels])Generates CyclicBins for grouping to arbitrary month periods. These can wrap around the end of a year.
- stepthe number of months to group.
Keywords
- start: By default months start in January, but any integer- 1:12can be used.
- labels: either a vector of labels matching the number of groups, or a function that generates labels from- Vector{Int}of the selected months.
hours(step; [start=0, labels])Generates CyclicBins for grouping to arbitrary hour periods. These can wrap around the end of the day.
- stepsthe number of hours to group.
Keywords
- start: By default seasons start at- 0, but any integer- 1:24can be used.
- labels: either a vector of four labels, or a function that generates labels from- Vector{Int}of the selected hours of the day.
Utility methods 
For transforming DimensionalData objects:
set(x, val)
set(x, args::Pairs...) => x with updated field/s
set(x, args...; kw...) => x with updated field/s
set(x, args::Tuple{Vararg{Dimension}}; kw...) => x with updated field/s
set(dim::Dimension, index::AbstractArray) => Dimension
set(dim::Dimension, lookup::Lookup) => Dimension
set(dim::Dimension, lookupcomponent::LookupTrait) => Dimension
set(dim::Dimension, metadata::AbstractMetadata) => DimensionSet the properties of an object, its internal data or the traits of its dimensions and lookup index.
As DimensionalData is so strongly typed you do not need to specify what field of a Lookup to set - there is no ambiguity.
To set fields of a Lookup you need to specify the dimension. This can be done using X => val pairs, X = val keyword arguments, or X(val) wrapped arguments.
When a Dimension or Lookup is passed to set to replace the existing ones, fields that are not set will keep their original values.
Notes:
Changing a lookup index range/vector will also update the step size and order where applicable.
Setting the Order like ForwardOrdered will not reverse the array or dimension to match. Use reverse and reorder to do this.
Examples
julia> using DimensionalData; const DD = DimensionalData;
julia> da = DimArray(zeros(3, 4), (custom=10.0:010.0:30.0, Z=-20:010.0:10.0));
julia> set(da, ones(3, 4))
╭─────────────────────────╮
│ 3×4 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────────── dims ┐
  ↓ custom Sampled{Float64} 10.0:10.0:30.0 ForwardOrdered Regular Points,
  → Z      Sampled{Float64} -20.0:10.0:10.0 ForwardOrdered Regular Points
└─────────────────────────────────────────────────────────────────────────┘
  ↓ →  -20.0  -10.0  0.0  10.0
 10.0    1.0    1.0  1.0   1.0
 20.0    1.0    1.0  1.0   1.0
 30.0    1.0    1.0  1.0   1.0Change the Dimension wrapper type:
julia> set(da, :Z => Ti, :custom => Z)
╭─────────────────────────╮
│ 3×4 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────── dims ┐
  ↓ Z  Sampled{Float64} 10.0:10.0:30.0 ForwardOrdered Regular Points,
  → Ti Sampled{Float64} -20.0:10.0:10.0 ForwardOrdered Regular Points
└─────────────────────────────────────────────────────────────────────┘
  ↓ →  -20.0  -10.0  0.0  10.0
 10.0    0.0    0.0  0.0   0.0
 20.0    0.0    0.0  0.0   0.0
 30.0    0.0    0.0  0.0   0.0Change the lookup Vector:
julia> set(da, Z => [:a, :b, :c, :d], :custom => [4, 5, 6])
╭─────────────────────────╮
│ 3×4 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────────── dims ┐
  ↓ custom Sampled{Int64} [4, 5, 6] ForwardOrdered Regular Points,
  → Z      Sampled{Symbol} [:a, :b, :c, :d] ForwardOrdered Regular Points
└─────────────────────────────────────────────────────────────────────────┘
 ↓ →   :a   :b   :c   :d
 4    0.0  0.0  0.0  0.0
 5    0.0  0.0  0.0  0.0
 6    0.0  0.0  0.0  0.0Change the Lookup type:
julia> set(da, Z=DD.NoLookup(), custom=DD.Sampled())
╭─────────────────────────╮
│ 3×4 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────────── dims ┐
  ↓ custom Sampled{Float64} 10.0:10.0:30.0 ForwardOrdered Regular Points,
  → Z     
└─────────────────────────────────────────────────────────────────────────┘
 10.0  0.0  0.0  0.0  0.0
 20.0  0.0  0.0  0.0  0.0
 30.0  0.0  0.0  0.0  0.0Change the Sampling trait:
julia> set(da, :custom => DD.Irregular(10, 12), Z => DD.Regular(9.9))
╭─────────────────────────╮
│ 3×4 DimArray{Float64,2} │
├─────────────────────────┴─────────────────────────────────────────── dims ┐
  ↓ custom Sampled{Float64} 10.0:10.0:30.0 ForwardOrdered Irregular Points,
  → Z      Sampled{Float64} -20.0:10.0:10.0 ForwardOrdered Regular Points
└───────────────────────────────────────────────────────────────────────────┘
  ↓ →  -20.0  -10.0  0.0  10.0
 10.0    0.0    0.0  0.0   0.0
 20.0    0.0    0.0  0.0   0.0
 30.0    0.0    0.0  0.0   0.0rebuild(x; kw...)Rebuild an object struct with updated field values.
x can be a AbstractDimArray, a Dimension, Lookup or other custom types.
This is an abstraction that allows inbuilt and custom types to be rebuilt to update their fields, as most objects in DimensionalData.jl are immutable.
Rebuild is mostly automated using ConstructionBase.setproperties. It should only be defined if your object has fields with with different names to DimensionalData objects. Try not to do that!
The arguments required are defined for the abstract type that has a rebuild method.
AbstractBasicDimArray:
- dims: a- Tupleof- Dimension
AbstractDimArray:
- data: the parent object - an- AbstractArray
- dims: a- Tupleof- Dimension
- refdims: a- Tupleof- Dimension
- name: A Symbol, or- NoNameand- Nameon GPU.
- metadata: A- Dict-like object
AbstractDimStack:
- data: the parent object, often a- NamedTuple
- dims,- refdims,- metadata
Dimension:
- val: anything.
Lookup:
- data: the parent object, an- AbstractArray
- Note: argument - rebuildis deprecated on- AbstractDimArrayand
AbstractDimStack in favour of always using the keyword version. In future the argument version will only be used on Dimension, which only have one argument.
modify(f, A::AbstractDimArray) => AbstractDimArray
modify(f, s::AbstractDimStack) => AbstractDimStack
modify(f, dim::Dimension) => Dimension
modify(f, x, lookupdim::Dimension) => typeof(x)Modify the parent data, rebuilding the object wrapper without change. f must return a AbstractArray of the same size as the original.
This method is mostly useful as a way of swapping the parent array type of an object.
Example
If we have a previously-defined DimArray, we can copy it to an Nvidia GPU with:
A = DimArray(rand(100, 100), (X, Y))
modify(CuArray, A)This also works for all the data layers in a DimStack.
broadcast_dims(f, sources::AbstractDimArray...) => AbstractDimArrayBroadcast function f over the AbstractDimArrays in sources, permuting and reshaping dimensions to match where required. The result will contain all the dimensions in all passed in arrays in the order in which they are found.
Arguments
- sources:- AbstractDimArraysto broadcast over with- f.
This is like broadcasting over every slice of A if it is sliced by the dimensions of B.
broadcast_dims!(f, dest::AbstractDimArray, sources::AbstractDimArray...) => destBroadcast function f over the AbstractDimArrays in sources, writing to dest. sources are permuting and reshaping dimensions to match where required.
The result will contain all the dimensions in all passed in arrays, in the order in which they are found.
Arguments
- dest:- AbstractDimArrayto update.
- sources:- AbstractDimArraysto broadcast over with- f.
mergedims(old_dims => new_dim) => DimensionReturn a dimension new_dim whose indices are a MergedLookup of the indices of old_dims.
mergedims(dims, old_dims => new_dim, others::Pair...) => dims_newIf dimensions old_dims, new_dim, etc. are found in dims, then return new dims_new where all dims in old_dims have been combined into a single dim new_dim. The returned dimension will keep only the name of new_dim. Its coords will be a MergedLookup of the coords of the dims in old_dims. New dimensions are always placed at the end of dims_new. others contains other dimension pairs to be merged.
Example
julia> using DimensionalData
julia> ds = (X(0:0.1:0.4), Y(10:10:100), Ti([0, 3, 4]))
↓ X  0.0:0.1:0.4,
→ Y  10:10:100,
↗ Ti [0, 3, 4]
julia> mergedims(ds, (X, Y) => :space)
↓ Ti    [0, 3, 4],
→ space MergedLookup{Tuple{Float64, Int64}} [(0.0, 10), (0.1, 10), …, (0.3, 100), (0.4, 100)] ↓ X, → Ymergedims(A::AbstractDimArray, dim_pairs::Pair...) => AbstractDimArray
mergedims(A::AbstractDimStack, dim_pairs::Pair...) => AbstractDimStackReturn a new array or stack whose dimensions are the result of mergedims(dims(A), dim_pairs).
unmergedims(merged_dims::Tuple{Vararg{Dimension}}) => Tuple{Vararg{Dimension}}Return the unmerged dimensions from a tuple of merged dimensions. However, the order of the original dimensions are not necessarily preserved.
unmergedims(A::AbstractDimArray, original_dims) => AbstractDimArray
unmergedims(A::AbstractDimStack, original_dims) => AbstractDimStackReturn a new array or stack whose dimensions are restored to their original prior to calling mergedims(A, dim_pairs).
reorder(A::Union{AbstractDimArray,AbstractDimStack}, order::Pair...)
reorder(A::Union{AbstractDimArray,AbstractDimStack}, order)
reorder(A::Dimension, order::Order)Reorder every dims index/array to order, or reorder index for the given dimension(s) in order.
order can be an Order, Dimension => Order pairs. A Tuple of Dimensions or any object that defines dims can be used in which case the dimensions of this object are used for reordering.
If no axis reversal is required the same objects will be returned, without allocation.
Example
using DimensionalData
# Create a DimArray
da = DimArray([1 2 3; 4 5 6], (X(10:10:20), Y(300:-100:100)))
# Reverse it
rev = reverse(da, dims=Y)
# using `da` in reorder will return it to the original order
reorder(rev, da) == da
# output
trueBase methods
Base.cat(stacks::AbstractDimStack...; [keys=keys(stacks[1])], dims)Concatenate all or a subset of layers for all passed in stacks.
Keywords
- keys:- Tupleof- Symbolfor the stack keys to concatenate.
- dims: Dimension of child array to concatenate on.
Example
Concatenate the :sea_surface_temp and :humidity layers in the time dimension:
cat(stacks...; keys=(:sea_surface_temp, :humidity), dims=Ti)Base.copy!(dst::AbstractArray, src::AbstractDimStack, key::Key)Copy the stack layer key to dst, which can be any AbstractArray.
Example
Copy the :humidity layer from stack to array.
copy!(array, stack, :humidity)Base.copy!(dst::AbstractDimStack, src::AbstractDimStack, [keys=keys(dst)])Copy all or a subset of layers from one stack to another.
Example
Copy just the :sea_surface_temp and :humidity layers from src to dst.
copy!(dst::AbstractDimStack, src::AbstractDimStack, keys=(:sea_surface_temp, :humidity))Base.eachslice(A::AbstractDimArray; dims,drop=true)Create a generator that iterates over dimensions dims of A, returning arrays that select all the data from the other dimensions in A using views.
The generator has size and axes equivalent to those of the provided dims if drop=true. Otherwise it will have the same dimensionality as the underlying array with inner dimensions having size 1.
Base.eachslice(stack::AbstractDimStack; dims, drop=true)Create a generator that iterates over dimensions dims of stack, returning stacks that select all the data from the other dimensions in stack using views.
The generator has size and axes equivalent to those of the provided dims.
Examples
julia> ds = DimStack((
           x=DimArray(randn(2, 3, 4), (X([:x1, :x2]), Y(1:3), Z)),
           y=DimArray(randn(2, 3, 5), (X([:x1, :x2]), Y(1:3), Ti))
       ));
julia> slices = eachslice(ds; dims=(Z, X));
julia> size(slices)
(4, 2)
julia> map(dims, axes(slices))
↓ Z Base.OneTo(4),
→ X Base.OneTo(2)
julia> first(slices)
╭──────────────╮
│ 3×5 DimStack │
├──────────────┴─────────────────────────────────── dims ┐
  ↓ Y  Sampled{Int64} 1:3 ForwardOrdered Regular Points,
  → Ti
├──────────────────────────────────────────────── layers ┤
  :x eltype: Float64 dims: Y size: 3
  :y eltype: Float64 dims: Y, Ti size: 3×5
└────────────────────────────────────────────────────────┘Most base methods work as expected, using Dimension wherever a dims keyword is used. They are not all specifically documented here.
Name 
Name <: AbstractName
Name(name::Union{Symbol,Name) => Name
Name(name::NoName) => NoNameName wrapper. This lets arrays keep symbol names when the array wrapper needs to be isbits, like for use on GPUs. It makes the name a property of the type. It's not necessary to use in normal use, a symbol is probably easier.
NoName <: AbstractName
NoName()NoName specifies an array is not named, and is the default name value for all AbstractDimArrays.
Internal interface 
    DimArrayInterfaceAn Interfaces.jl Interface with mandatory components (:dims, :refdims_base, :ndims, :size, :rebuild_parent, :rebuild_dims, :rebuild_parent_kw, :rebuild_dims_kw, :rebuild) and optional components (:refdims, :name, :metadata).
This is an early stage of inteface definition, many things are not yet tested.
Pass constructed AbstractDimArrays as test data.
They must not be zero dimensional, and should test at least 1, 2, and 3 dimensions.
Extended help
Mandatory keys:
- dims:- defines a - dimsmethod
- dims are updated on getindex 
 
- refdims_base:- refdimsreturns a tuple of Dimension or empty
- ndims: number of dims matches dimensions of array
- size: length of dims matches dimensions of array
- rebuild_parent: rebuild parent from args
- rebuild_dims: rebuild paaarnet and dims from args
- rebuild_parent_kw: rebuild parent from args
- rebuild_dims_kw: rebuild dims from args
- rebuild: all rebuild arguments and keywords are accepted
Optional keys:
- refdims:- refdims are updated in args rebuild 
- refdims are updated in kw rebuild 
- dropped dimensions are added to refdims 
 
- name:- rebuild updates name in arg rebuild 
- rebuild updates name in kw rebuild 
 
- metadata:- rebuild updates metadata in arg rebuild 
- rebuild updates metadata in kw rebuild 
 
    DimStackInterfaceAn Interfaces.jl Interface with mandatory components (:dims, :refdims_base, :ndims, :size, :rebuild_parent, :rebuild_dims, :rebuild_layerdims, :rebuild_dims_kw, :rebuild_parent_kw, :rebuild_layerdims_kw, :rebuild) and optional components (:refdims, :metadata).
This is an early stage of inteface definition, many things are not yet tested.
Pass constructed AbstractDimArrays as test data.
They must not be zero dimensional, and should test at least 1, 2, and 3 dimensions.
Extended help
Mandatory keys:
- dims:- defines a - dimsmethod
- dims are updated on getindex 
 
- refdims_base:- refdimsreturns a tuple of Dimension or empty
- ndims: number of dims matches ndims of stack
- size: length of dims matches size of stack
- rebuild_parent: rebuild parent from args
- rebuild_dims: rebuild paaarnet and dims from args
- rebuild_layerdims: rebuild paaarnet and dims from args
- rebuild_dims_kw: rebuild dims from args
- rebuild_parent_kw: rebuild parent from args
- rebuild_layerdims_kw: rebuild parent from args
- rebuild: all rebuild arguments and keywords are accepted
Optional keys:
- refdims:- refdims are updated in args rebuild 
- refdims are updated in kw rebuild 
- dropped dimensions are added to refdims 
 
- metadata:- rebuild updates metadata in arg rebuild 
- rebuild updates metadata in kw rebuild 
 
rebuild_from_arrays(s::AbstractDimStack, das::NamedTuple{<:Any,<:Tuple{Vararg{AbstractDimArray}}}; kw...)Rebuild an AbstractDimStack from a Tuple or NamedTuple of AbstractDimArray and an existing stack.
Keywords
Keywords are simply the fields of the stack object:
- data
- dims
- refdims
- metadata
- layerdims
- layermetadata
show_main(io::IO, mime, A::AbstractDimArray)
show_main(io::IO, mime, A::AbstractDimStack)Interface methods for adding the main part of show
At the least, you likely want to call:
print_top(io, mime, A)But read the DimensionalData.jl show.jl code for details.
show_after(io::IO, mime, A::AbstractDimArray)
show_after(io::IO, mime, A::AbstractDimStack)Interface methods for adding additional show text for AbstractDimArray/AbstractDimStack subtypes.
Always include kw to avoid future breaking changes
Additional keywords may be added at any time.
blockwidth is passed in context
blockwidth = get(io, :blockwidth, 10000)Note - a ANSI box is left unclosed. This method needs to close it, or add more. blockwidth is the maximum length of the inner text.
Most likely you always want to at least close the show blocks with:
print_block_close(io, blockwidth)But read the DimensionalData.jl show.jl code for details.
refdims_title(A::AbstractDimArray)
refdims_title(refdims::Tuple)
refdims_title(refdim::Dimension)Generate a title string based on reference dimension values.
