broadcast_dims
and broadcast_dims!
broadcast_dims
is a dimension-aware extension to Base julia broadcast
.
Because we know the names of the dimensions there is no ambiguity in which one we mean to broadcast together. We can permute and reshape dims so that broadcasts that would fail with a regular Array
just work with a DimArray
.
As an added bonus, broadcast_dims
even works on DimStack
s.
Example: scaling along the time dimension
Define some dimensions:
julia
using DimensionalData
using Dates
using Statistics
julia
julia> x, y, t = X(1:100), Y(1:25), Ti(DateTime(2000):Month(1):DateTime(2000, 12))
↓ X 1:100,
→ Y 1:25,
↗ Ti Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00")
A DimArray from 1:12 to scale with:
julia
julia> month_scalars = DimArray(month, t)
╭────────────────────────────────────────╮
│ 12-element DimArray{Int64,1} month(Ti) │
├────────────────────────────────────────┴─────────────────────────────── dims ┐
↓ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
2000-01-01T00:00:00 1
2000-02-01T00:00:00 2
2000-03-01T00:00:00 3
2000-04-01T00:00:00 4
2000-05-01T00:00:00 5
2000-06-01T00:00:00 6
2000-07-01T00:00:00 7
2000-08-01T00:00:00 8
2000-09-01T00:00:00 9
2000-10-01T00:00:00 10
2000-11-01T00:00:00 11
2000-12-01T00:00:00 12
And a larger DimArray for example data:
julia
julia> data = rand(x, y, t)
╭───────────────────────────────╮
│ 100×25×12 DimArray{Float64,3} │
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ X Sampled{Int64} 1:100 ForwardOrdered Regular Points,
→ Y Sampled{Int64} 1:25 ForwardOrdered Regular Points,
↗ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
[:, :, 1]
↓ → 1 2 3 … 23 24 25
1 0.792885 0.896315 0.28708 0.818644 0.568131 0.967865
2 0.0959455 0.164724 0.491767 0.515061 0.0416986 0.31065
3 0.23546 0.652353 0.201734 0.568302 0.875221 0.651784
4 0.2344 0.390033 0.108592 0.69635 0.655684 0.564589
⋮ ⋱ ⋮
97 0.192183 0.76163 0.924417 0.0502944 0.736214 0.959028
98 0.204551 0.725738 0.511086 0.566557 0.268319 0.790283
99 0.250752 0.612779 0.974596 0.246796 0.555456 0.27181
100 0.295548 0.364488 0.21714 … 0.687223 0.068913 0.453973
A regular broadcast fails:
julia
julia> scaled = data .* month_scalars
ERROR: DimensionMismatch: arrays could not be broadcast to a common size; got a dimension with lengths 100 and 12
But broadcast_dims
knows to broadcast over the Ti
dimension:
julia
julia> scaled = broadcast_dims(*, data, month_scalars)
╭───────────────────────────────╮
│ 100×25×12 DimArray{Float64,3} │
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ X Sampled{Int64} 1:100 ForwardOrdered Regular Points,
→ Y Sampled{Int64} 1:25 ForwardOrdered Regular Points,
↗ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
[:, :, 1]
↓ → 1 2 3 … 23 24 25
1 0.792885 0.896315 0.28708 0.818644 0.568131 0.967865
2 0.0959455 0.164724 0.491767 0.515061 0.0416986 0.31065
3 0.23546 0.652353 0.201734 0.568302 0.875221 0.651784
4 0.2344 0.390033 0.108592 0.69635 0.655684 0.564589
⋮ ⋱ ⋮
97 0.192183 0.76163 0.924417 0.0502944 0.736214 0.959028
98 0.204551 0.725738 0.511086 0.566557 0.268319 0.790283
99 0.250752 0.612779 0.974596 0.246796 0.555456 0.27181
100 0.295548 0.364488 0.21714 … 0.687223 0.068913 0.453973
We can see the means of each month are scaled by the broadcast :
julia
julia> mean(eachslice(data; dims=(X, Y)))
╭────────────────────────────────╮
│ 12-element DimArray{Float64,1} │
├────────────────────────────────┴─────────────────────────────────────── dims ┐
↓ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
2000-01-01T00:00:00 0.496108
2000-02-01T00:00:00 0.49795
2000-03-01T00:00:00 0.493708
2000-04-01T00:00:00 0.492377
2000-05-01T00:00:00 0.496201
2000-06-01T00:00:00 0.496665
2000-07-01T00:00:00 0.489762
2000-08-01T00:00:00 0.503719
2000-09-01T00:00:00 0.505946
2000-10-01T00:00:00 0.499719
2000-11-01T00:00:00 0.490968
2000-12-01T00:00:00 0.501068
julia
julia> mean(eachslice(scaled; dims=(X, Y)))
╭────────────────────────────────╮
│ 12-element DimArray{Float64,1} │
├────────────────────────────────┴─────────────────────────────────────── dims ┐
↓ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
2000-01-01T00:00:00 0.496108
2000-02-01T00:00:00 0.995899
2000-03-01T00:00:00 1.48113
2000-04-01T00:00:00 1.96951
2000-05-01T00:00:00 2.48101
2000-06-01T00:00:00 2.97999
2000-07-01T00:00:00 3.42833
2000-08-01T00:00:00 4.02976
2000-09-01T00:00:00 4.55351
2000-10-01T00:00:00 4.99719
2000-11-01T00:00:00 5.40065
2000-12-01T00:00:00 6.01282