Getters
DimensionalData.jl defines consistent methods to retrieve information from objects like DimArray
, DimStack
, Tuple
s of Dimension
, Dimension
and Lookup
.
First we will define an example DimArray
.
julia
using DimensionalData
using DimensionalData.Lookups
x, y = X(10:-1:1), Y(100.0:10:200.0)
↓ X 10:-1:1,
→ Y 100.0:10.0:200.0
julia
julia> A = rand(x, y)
╭───────────────────────────╮
│ 10×11 DimArray{Float64,2} │
├───────────────────────────┴─────────────────────────────────── dims ┐
↓ X Sampled{Int64} 10:-1:1 ReverseOrdered Regular Points,
→ Y Sampled{Float64} 100.0:10.0:200.0 ForwardOrdered Regular Points
└─────────────────────────────────────────────────────────────────────┘
↓ → 100.0 110.0 … 180.0 190.0 200.0
10 0.664038 0.464482 0.868966 0.530653 0.418968
9 0.00832284 0.0980829 0.314535 0.322005 0.674881
8 0.639212 0.233778 0.315591 0.190225 0.475569
7 0.602315 0.0372362 0.950143 0.062593 0.948976
6 0.375166 0.423798 … 0.640311 0.932968 0.98985
5 0.153219 0.635963 0.293126 0.68781 0.309301
4 0.00508449 0.829714 0.727149 0.585756 0.921145
3 0.946824 0.906705 0.899632 0.471877 0.633956
2 0.876112 0.831617 0.128932 0.428951 0.243803
1 0.749253 0.864128 … 0.715102 0.921012 0.566574
dims
retrieves dimensions from any object that has them.
What makes it so useful is you can filter which dimensions you want in what order, using any Dimension
, Type{Dimension}
or Symbol
.
julia
julia> dims(A)
↓ X Sampled{Int64} 10:-1:1 ReverseOrdered Regular Points,
→ Y Sampled{Float64} 100.0:10.0:200.0 ForwardOrdered Regular Points
julia
julia> dims(A, Y)
Y Sampled{Float64} ForwardOrdered Regular Points
wrapping: 100.0:10.0:200.0
julia
julia> dims(A, Y())
Y Sampled{Float64} ForwardOrdered Regular Points
wrapping: 100.0:10.0:200.0
julia
julia> dims(A, :Y)
Y Sampled{Float64} ForwardOrdered Regular Points
wrapping: 100.0:10.0:200.0
julia
julia> dims(A, (X,))
↓ X Sampled{Int64} 10:-1:1 ReverseOrdered Regular Points
julia
julia> dims(A, (Y, X))
↓ Y Sampled{Float64} 100.0:10.0:200.0 ForwardOrdered Regular Points,
→ X Sampled{Int64} 10:-1:1 ReverseOrdered Regular Points
julia
julia> dims(A, reverse(dims(A)))
↓ Y Sampled{Float64} 100.0:10.0:200.0 ForwardOrdered Regular Points,
→ X Sampled{Int64} 10:-1:1 ReverseOrdered Regular Points
julia
julia> dims(A, isregular)
↓ X Sampled{Int64} 10:-1:1 ReverseOrdered Regular Points,
→ Y Sampled{Float64} 100.0:10.0:200.0 ForwardOrdered Regular Points
Predicates
These always return true
or false
. With multiple dimensions, fale
means !all
and true
means all
.
dims
and all other methods listed above can use predicates to filter the returned dimensions.
julia
julia> issampled(A)
true
julia
julia> issampled(dims(A))
true
julia
julia> issampled(A, Y)
true
julia
julia> issampled(lookup(A, Y))
true
julia
julia> dims(A, issampled)
↓ X Sampled{Int64} 10:-1:1 ReverseOrdered Regular Points,
→ Y Sampled{Float64} 100.0:10.0:200.0 ForwardOrdered Regular Points
julia
julia> otherdims(A, issampled)
()
julia
julia> lookup(A, issampled)
Sampled{Int64} 10:-1:1 ReverseOrdered Regular Points,
Sampled{Float64} 100.0:10.0:200.0 ForwardOrdered Regular Points