Dimensional broadcasts with @d
and broadcast_dims
Broadcasting over AbstractDimArray works as usual with Base Julia broadcasts, except that dimensions are checked for compatibility with each other, and that values match. Strict checks can be turned off globally with strict_broadcast!(false)
. To avoid even dimension name checks, broadcast over parent(dimarray)
.
The @d
macro is a dimension-aware extension to regular dot broadcasting. broadcast_dims
is analogous to Base Julia's broadcast
.
Because we know the names of the dimensions, there is no ambiguity in which ones we mean to broadcast together. This means we can permute and reshape dims so that broadcasts that would fail with a regular Array
just work with a DimArray
.
As an added bonus, broadcast_dims
even works on DimStack
s. Currently, @d
does not work on DimStack
.
Example: scaling along the time dimension
Define some dimensions:
using DimensionalData
using Dates
using Statistics
julia> x, y, t = X(1:100), Y(1:25), Ti(DateTime(2000):Month(1):DateTime(2000, 12))
(↓ X 1:100,
→ Y 1:25,
↗ Ti Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00"))
A DimArray from 1:12 to scale with:
julia> month_scalars = DimArray(month, t)
╭────────────────────────────────────────╮
│ 12-element DimArray{Int64,1} month(Ti) │
├────────────────────────────────────────┴─────────────────────────────── dims ┐
↓ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
2000-01-01T00:00:00 1
2000-02-01T00:00:00 2
2000-03-01T00:00:00 3
2000-04-01T00:00:00 4
2000-05-01T00:00:00 5
2000-06-01T00:00:00 6
2000-07-01T00:00:00 7
2000-08-01T00:00:00 8
2000-09-01T00:00:00 9
2000-10-01T00:00:00 10
2000-11-01T00:00:00 11
2000-12-01T00:00:00 12
And a larger DimArray for example data:
julia> data = rand(x, y, t)
╭───────────────────────────────╮
│ 100×25×12 DimArray{Float64,3} │
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ X Sampled{Int64} 1:100 ForwardOrdered Regular Points,
→ Y Sampled{Int64} 1:25 ForwardOrdered Regular Points,
↗ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
[:, :, 1]
↓ → 1 2 3 … 23 24 25
1 0.624685 0.909533 0.43314 0.0541549 0.721101 0.600306
2 0.546357 0.621601 0.960677 0.129382 0.434374 0.438592
3 0.407207 0.861652 0.0837074 0.0725917 0.800084 0.749829
4 0.67539 0.637399 0.416444 0.853879 0.988957 0.44724
⋮ ⋱ ⋮
97 0.474087 0.475786 0.759047 0.704613 0.706165 0.1279
98 0.844262 0.668594 0.431398 0.746465 0.919534 0.398776
99 0.0471885 0.788358 0.0145691 0.647328 0.517971 0.910412
100 0.0442448 0.702787 0.585658 … 0.68326 0.774131 0.403955
A regular broadcast fails:
julia> scaled = data .* month_scalars
ERROR: DimensionMismatch: arrays could not be broadcast to a common size: a has axes DimensionalData.Dimensions.DimUnitRange(Base.OneTo(100), X{Sampled{Int64, UnitRange{Int64}, ForwardOrdered, Regular{Int64}, Points, NoMetadata}}([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100])) and b has axes DimensionalData.Dimensions.DimUnitRange(Base.OneTo(12), Ti{Sampled{Dates.DateTime, StepRange{Dates.DateTime, Dates.Month}, ForwardOrdered, Regular{Dates.Month}, Points, NoMetadata}}([Dates.DateTime("2000-01-01T00:00:00"), Dates.DateTime("2000-02-01T00:00:00"), Dates.DateTime("2000-03-01T00:00:00"), Dates.DateTime("2000-04-01T00:00:00"), Dates.DateTime("2000-05-01T00:00:00"), Dates.DateTime("2000-06-01T00:00:00"), Dates.DateTime("2000-07-01T00:00:00"), Dates.DateTime("2000-08-01T00:00:00"), Dates.DateTime("2000-09-01T00:00:00"), Dates.DateTime("2000-10-01T00:00:00"), Dates.DateTime("2000-11-01T00:00:00"), Dates.DateTime("2000-12-01T00:00:00")]))
But @d
knows to broadcast over the Ti
dimension:
julia> scaled = @d data .* month_scalars
╭───────────────────────────────╮
│ 100×25×12 DimArray{Float64,3} │
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ X Sampled{Int64} 1:100 ForwardOrdered Regular Points,
→ Y Sampled{Int64} 1:25 ForwardOrdered Regular Points,
↗ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
[:, :, 1]
↓ → 1 2 3 … 23 24 25
1 0.624685 0.909533 0.43314 0.0541549 0.721101 0.600306
2 0.546357 0.621601 0.960677 0.129382 0.434374 0.438592
3 0.407207 0.861652 0.0837074 0.0725917 0.800084 0.749829
4 0.67539 0.637399 0.416444 0.853879 0.988957 0.44724
⋮ ⋱ ⋮
97 0.474087 0.475786 0.759047 0.704613 0.706165 0.1279
98 0.844262 0.668594 0.431398 0.746465 0.919534 0.398776
99 0.0471885 0.788358 0.0145691 0.647328 0.517971 0.910412
100 0.0442448 0.702787 0.585658 … 0.68326 0.774131 0.403955
We can see the means of each month are scaled by the broadcast :
julia> mean(eachslice(data; dims=(X, Y)))
╭────────────────────────────────╮
│ 12-element DimArray{Float64,1} │
├────────────────────────────────┴─────────────────────────────────────── dims ┐
↓ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
2000-01-01T00:00:00 0.50854
2000-02-01T00:00:00 0.499674
2000-03-01T00:00:00 0.510863
2000-04-01T00:00:00 0.500818
2000-05-01T00:00:00 0.501124
2000-06-01T00:00:00 0.495215
2000-07-01T00:00:00 0.489497
2000-08-01T00:00:00 0.500495
2000-09-01T00:00:00 0.491479
2000-10-01T00:00:00 0.499282
2000-11-01T00:00:00 0.491202
2000-12-01T00:00:00 0.485718
julia> mean(eachslice(scaled; dims=(X, Y)))
╭────────────────────────────────╮
│ 12-element DimArray{Float64,1} │
├────────────────────────────────┴─────────────────────────────────────── dims ┐
↓ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
2000-01-01T00:00:00 0.50854
2000-02-01T00:00:00 0.999348
2000-03-01T00:00:00 1.53259
2000-04-01T00:00:00 2.00327
2000-05-01T00:00:00 2.50562
2000-06-01T00:00:00 2.97129
2000-07-01T00:00:00 3.42648
2000-08-01T00:00:00 4.00396
2000-09-01T00:00:00 4.42331
2000-10-01T00:00:00 4.99282
2000-11-01T00:00:00 5.40322
2000-12-01T00:00:00 5.82862
You can also use broadcast_dims
the same way:
julia> broadcast_dims(*, data, month_scalars)
╭───────────────────────────────╮
│ 100×25×12 DimArray{Float64,3} │
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ X Sampled{Int64} 1:100 ForwardOrdered Regular Points,
→ Y Sampled{Int64} 1:25 ForwardOrdered Regular Points,
↗ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
[:, :, 1]
↓ → 1 2 3 … 23 24 25
1 0.624685 0.909533 0.43314 0.0541549 0.721101 0.600306
2 0.546357 0.621601 0.960677 0.129382 0.434374 0.438592
3 0.407207 0.861652 0.0837074 0.0725917 0.800084 0.749829
4 0.67539 0.637399 0.416444 0.853879 0.988957 0.44724
⋮ ⋱ ⋮
97 0.474087 0.475786 0.759047 0.704613 0.706165 0.1279
98 0.844262 0.668594 0.431398 0.746465 0.919534 0.398776
99 0.0471885 0.788358 0.0145691 0.647328 0.517971 0.910412
100 0.0442448 0.702787 0.585658 … 0.68326 0.774131 0.403955
And with the @d
macro you can set the dimension order and other properties of the output array, by passing a single assignment or a NamedTuple
argument to @d
after the broadcast:
julia> @d data .* month_scalars dims=(Ti, X, Y)
╭───────────────────────────────╮
│ 12×100×25 DimArray{Float64,3} │
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points,
→ X Sampled{Int64} 1:100 ForwardOrdered Regular Points,
↗ Y Sampled{Int64} 1:25 ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
[:, :, 1]
↓ → 1 … 98 99 100
2000-01-01T00:00:00 0.624685 0.844262 0.0471885 0.0442448
2000-02-01T00:00:00 0.547848 1.79785 0.187495 0.441762
2000-03-01T00:00:00 2.49232 1.15489 2.82356 0.921936
2000-04-01T00:00:00 0.439142 2.61341 1.59542 2.24247
⋮ ⋱ ⋮
2000-09-01T00:00:00 3.27042 6.61858 3.10246 5.93972
2000-10-01T00:00:00 0.12404 … 2.53632 7.83904 6.55713
2000-11-01T00:00:00 1.79388 2.5891 2.14203 5.52389
2000-12-01T00:00:00 8.84219 6.15004 5.04169 6.10415
Or
julia> @d data .* month_scalars (dims=(Ti, X, Y), name=:scaled)
╭──────────────────────────────────────╮
│ 12×100×25 DimArray{Float64,3} scaled │
├──────────────────────────────────────┴───────────────────────────────── dims ┐
↓ Ti Sampled{Dates.DateTime} Dates.DateTime("2000-01-01T00:00:00"):Dates.Month(1):Dates.DateTime("2000-12-01T00:00:00") ForwardOrdered Regular Points,
→ X Sampled{Int64} 1:100 ForwardOrdered Regular Points,
↗ Y Sampled{Int64} 1:25 ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
[:, :, 1]
↓ → 1 … 98 99 100
2000-01-01T00:00:00 0.624685 0.844262 0.0471885 0.0442448
2000-02-01T00:00:00 0.547848 1.79785 0.187495 0.441762
2000-03-01T00:00:00 2.49232 1.15489 2.82356 0.921936
2000-04-01T00:00:00 0.439142 2.61341 1.59542 2.24247
⋮ ⋱ ⋮
2000-09-01T00:00:00 3.27042 6.61858 3.10246 5.93972
2000-10-01T00:00:00 0.12404 … 2.53632 7.83904 6.55713
2000-11-01T00:00:00 1.79388 2.5891 2.14203 5.52389
2000-12-01T00:00:00 8.84219 6.15004 5.04169 6.10415